Cerebral blood flow during orthostasis: role of arterial CO2.
نویسندگان
چکیده
Reductions in end-tidal Pco(2) (Pet(CO(2))) during upright posture have been suggested to be the result of hyperventilation and the cause of decreases in cerebral blood flow (CBF). The goal of this study was to determine whether decreases in Pet(CO(2)) reflected decreases in arterial Pco(2) (Pa(CO(2))) and their relation to increases in alveolar ventilation (Va) and decreases in CBF. Fifteen healthy subjects (10 women and 5 men) were subjected to a 10-min head-up tilt (HUT) protocol. Pa(CO(2)), Va, and cerebral flow velocity (CFV) in the middle and anterior cerebral arteries were examined. In 12 subjects who completed the protocol, reductions in Pet(CO(2)) and Pa(CO(2)) (-1.7 +/- 0.5 and -1.1 +/- 0.4 mmHg, P < 0.05) during minute 1 of HUT were associated with a significant increase in Va (+0.7 +/- 0.3 l/min, P < 0.05). However, further decreases in Pa(CO(2)) (-0.5 +/- 0.5 mmHg, P < 0.05), from minute 1 to the last minute of HUT, occurred even though Va did not change significantly (-0.2 +/- 0.3 l/min, P = not significant). Similarly, CFV in the middle and anterior cerebral arteries decreased (-7 +/- 2 and -8 +/- 2%, P < 0.05) from minute 1 to the last minute of HUT, despite minimal changes in Pa(CO(2)). These data suggest that decreases in Pet(CO(2)) and Pa(CO(2)) during upright posture are not solely due to increased Va but could be due to ventilation-perfusion mismatch or a redistribution of CO(2) stores. Furthermore, the reduction in Pa(CO(2)) did not fully explain the decrease in CFV throughout HUT. These data suggest that factors in addition to a reduction in Pa(CO(2)) play a role in the CBF response to orthostatic stress.
منابع مشابه
Reduced cerebral blood flow with orthostasis precedes hypocapnic hyperpnea, sympathetic activation, and postural tachycardia syndrome.
Hyperventilation and reduced cerebral blood flow velocity can occur in postural tachycardia syndrome (POTS). We studied orthostatically intolerant patients, with suspected POTS, with a chief complaint of upright dyspnea. On the basis of our observations of an immediate reduction of cerebral blood flow velocity with orthostasis, we hypothesize that the resulting ischemic hypoxia of the carotid b...
متن کاملHyperventilation before resistance exercise: cerebral hemodynamics and orthostasis.
UNLABELLED Hyperventilation performed by athletes during preparation for resistance exercise might contribute to reports of postexercise orthostatic instability. PURPOSE To test the hypothesis that post-resistance exercise orthostatic instability is associated with exaggerated reductions of cerebral blood-flow velocity after hyperventilation. METHODS We recorded the ECG, end-tidal CO2, beat...
متن کاملAutonomic ganglionic blockade does not prevent reduction in cerebral blood flow velocity during orthostasis in humans.
BACKGROUND AND PURPOSE The underlying mechanisms for reductions in cerebral blood flow (CBF) during orthostasis are not completely understood. This study tested the hypothesis that sympathetic activation causes cerebral vasoconstriction leading to reductions in CBF during lower body negative pressure (LBNP). METHODS CBF velocity, arterial pressure, and end-tidal CO(2) were measured during LBN...
متن کاملRole of Local Nerves and Prostaglandins in Regulation of Basal Blood Flow and Hypercapnic Vasodilatation of Cerebral Blood Vessels in the Rabbit
The mechanisms underlying cerebral vasodilatation during hypercapnia are not fully understood. To examine the role of nerves and prostaglandins in the regulation of basal blood flow and in hypercapnia-induced vasodilatation in the cerebral blood vessels of rabbit.Cerebral blood flow was measured by laser Doppler flow-meter in 18 NZW rabbits anesthetized with sodium pentobarbital. Tetrodetoxin ...
متن کاملRole of Nitric Oxide and ATP-Sensitive K+ Channels in Regulation of Basal Blood Flow and Hypercapnic Vasodilatation of Cerebral Blood Vessels in Rabbit
Background: The mechanisms underlying cerebral hypercapnic vasodilatation are not fully understood. Objective: To investigate the role of nitric oxide (NO) and ATP-sensitive potassium (KATP) channels in basal blood flow regulation and hypercapnia-induced vasodilatation in rabbit cerebral blood vessels. Methods: The change in cerebral blood flow was measured by a laser Doppler flowmeter in 18 Ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 290 4 شماره
صفحات -
تاریخ انتشار 2006